Mir-21 Regulation of MARCKS Protein and Mucin Secretion in Airway Epithelial Cells

نویسندگان

  • W. Randall Lampe
  • Shijing Fang
  • Qi Yin
  • Anne L. Crews
  • Kenneth B. Adler
چکیده

Hypersecretion of mucus characterizes many inflammatory airway diseases, including asthma, chronic bronchitis, and cystic fibrosis. Excess mucus causes airway obstruction, reduces pulmonary function, and can lead to increased morbidity and mortality. MicroRNAs are small non-coding pieces of RNA which regulate other genes by binding to a complementary sequence in the target mRNA. The microRNA miR-21 is upregulated in many inflammatory conditions and, interestingly, miR-21 has been shown to target the mRNA of Myristoylated Alanine-Rich C Kinase Substrate (MARCKS), a protein that is an important regulator of airway mucin (the solid component of mucus) secretion. In these studies, we determined that exposure of primary, well-differentiated, normal human bronchial epithelial (NHBE) cells to the pro-inflammatory stimulus lipopolysaccharide (LPS) increased expression of both miR-21 and MARCKS in a time-dependent manner. To investigate whether miR-21 regulation of MARCKS played a role in mucin secretion, two separate airway epithelial cell lines, HBE1 (papilloma virus transformed) and NCI-H292 (mucodepidermoid derived) were utilized, since manipulation of miR-21 is performed via transfection of commercially-available miR-21 inhibitors and mimics/activators. Treatment of HBE1 cells with LPS caused concentration-dependent increases in expression of both miR-21 and MARCKS mRNA and protein. The miR-21 inhibitor effectively reduced levels of miR-21 in the cells, coincident with an increase in MARCKS mRNA expression over time as well as enhanced mucin secretion, while the miR-21 mimic/activator increased levels of miR-21, which coincided with a decrease in expression of MARCKS and a decrease in mucin secretion. These results suggest that miR-21 is increased in airway epithelial cells following exposure to LPS, and that miR-21 downregulates expression of MARCKS, which may decrease mucin secretion by the cells. Thus, miR-21 may act as a negative feedback regulator of mucin secretion in airway epithelial cells, and may do so, at least in part, by downregulating expression of MARCKS.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

MARCKS protein is a key molecule regulating mucin secretion by human airway epithelial cells in vitro.

Hypersecretion of airway mucin characterizes numerous respiratory diseases. Although diverse pathological stimuli can provoke exocytotic release of mucin from secretory cells of the airway epithelium, mechanisms involved remain obscure. This report describes a new paradigm for the intracellular signaling mechanism regulating airway mucin secretion. Direct evidence is provided that the myristoyl...

متن کامل

MARCKS and HSP70 interactions regulate mucin secretion by human airway epithelial cells in vitro.

Myristoylated alanine-rich C kinase substrate (MARCKS) protein has been recognized as a key regulatory molecule controlling mucin secretion by airway epithelial cells in vitro and in vivo. We recently showed that two intracellular chaperones, heat shock protein 70 (HSP70) and cysteine string protein (CSP), associate with MARCKS in the secretory mechanism. To elucidate more fully MARCKS-HSP70 in...

متن کامل

Role of MARCKS in regulated secretion from mast cells and airway goblet cells.

MARCKS (myristoylated alanine-rich C kinase substrate) is postulated to regulate the passage of secretory granules through cortical actin in the early phase of exocytosis. There are, however, three proposed mechanisms of action, all of which were derived from studies using synthetic peptides representing either the central phosphorylation site domain or the upstream, NH2-terminal domain: it tet...

متن کامل

Mucin granule-associated proteins in human bronchial epithelial cells: the airway goblet cell "granulome"

BACKGROUND Excess mucus in the airways leads to obstruction in diseases such as chronic bronchitis, asthma, and cystic fibrosis. Mucins, the highly glycosolated protein components of mucus, are stored in membrane-bound granules housed in the cytoplasm of airway epithelial "goblet" cells until they are secreted into the airway lumen via an exocytotic process. Precise mechanism(s) of mucin secret...

متن کامل

Aerosolized BIO-11006, a Novel MARCKS- Related Peptide, Improves Airway Obstruction in a Mouse Model of Mucus Hypersecretion

Rationale: Mucus hypersecretion has been shown to be an important cause of airway obstruction in COPD and asthma, and has been associated with fatal asthma. Previous in-vitro and in-vivo studies have provided direct evidence that the myristoylated alanine-rich C kinase substrate (MARCKS) is a central regulatory molecule linking secretagogue stimulation at the goblet cell surface to mucin granul...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2013